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Temperature/density-dependent heavy-ion stopping 
data are important for ion-driven WDM experiments.

 Concept of the ion-driven WDM experiment planned by US-HIFS-VNL1:

 However, the Bragg curve shape can change during irradiation owing to
▬ increase of temperature,
▬ decrease of density (if hydro expansion is not negligible).
 Hydro calculation with temperature/density-dependent stopping data

is necessary for detailed design of the experimental conditions.  
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1B. G. Logan, ”Progress of heavy ion fusion science towards warm dense matter physics”, Workshop on accelerator driven warm dense matter physics, Pleasanton, CA, February 22-24, 2006.
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 Previous calculation (US-J WS2008)  Classical binary collision model:
▬ The projectile is assumed to be a point charge q+
▬ Total interaction = sum of many classical binary close collision

 Limitations:
▬ No quantum effects
▬ No collective excitation

of the target electrons
as a plasma

▬ No anti-screening of
projectile nuclear charge

In the previous calculation, collective excitation
of the target electrons was not taken into account.
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The stopping calculation was performed based on
a similar way to the Ziegler’s method2.

 Brandt-Kitagawa3 effective-charge theory:
▬ Electronic stopping cross section:

▬ “Stopping number”

(k, )  Dielectric response function
of the electron plasma


Collective excitation

▬ Local plasma
frequency:
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2J.F. Ziegler, J.P. Biersack and U. Littmark, The Stopping and Range of Ions in Solids, Pergamon Press, ISBN 0-08-021603 (1985).
3W. Brandt and M. Kitagawa, Phys. Rev. B 25 (1982) 5631.
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 Temperature/density-dependent dielectric response function by Arista4:

▬ Real part:

▬ Imaginary
part:

Quantum mechanical dielectric response functions
were used to treat arbitrary plasma degeneracies.
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4N. R. Arista and W. Brandt, Phys. Rev. A 29 (1984) 1471.
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The Brandt-Kitagawa theory3 was adopted
to calculate the projectile effective charge.

 Screening/anti-screening effect was taken into account  by assuming the 
projectile charge density distribution (r):

▬ Screening
length:

 Projectile charge state:

▬ BK’s recipe: vve must be the averaged velocity only of “valence” electrons
(not of all the electrons)  The “core” must be excluded!
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3W. Brandt and M. Kitagawa, Phys. Rev. B 25 (1982) 5631.



 Temperature-dependent
Thomas-Fermi model:
▬ e(r) = electrostatic potential
▬  = chemical potential
 No shell structure, no distinction between the core- and valence electrons

 The TF target atom was separated into the core
and valence parts using Cappeluti’s method5:
▬ Total energy stored in a sphere with a radius r:

▬ The core-valence boundary is given by rc
where W(r) has the minimum.

A Thomas-Fermi model was used to evaluate the
target electron density/velocity distribution.
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Total energy
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RWS

0 r
5E. Cappelluti and L. Delle Site, Physica A 303 (2001) 481.
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 Temperature/density-dependence of ne(r) in an 13Al target atom:

 Comparison with a HF calculation:

The target electron density distribution changes
with the temperature and pressure. 
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 Result of calculation; comparison with other data：
▬ 11Na projectile, 13Al target
▬ Total stopping S = Electronic stopping Se + Nuclear stopping6 Sn (Sn << Se)
▬ Asymptotic behaviors (E <  30 keV/u,  5 MeV/u < E) are excellent.

The accuracy for the cold solid target became a bit
worse than before, although the model was improved.

6W. D. Wilson et al., Phys. Rev. B 15 (1977) 2458.
#L. C. Northcliffe and R. F. Schilling, Nucl. Data Tables A7 (1970) 233. 
$J. F. Ziegler, “Computer Code SRIM-2008”, URL: http://www.srim.org/.
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 Temperature/density-dependence of the stopping cross-section for 13Al:

The projectile stopping power increases with increasing 
temperature and decreasing density of the target.
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 An example for demonstration of the temperature/density effect:
▬ Projectile: 30.6-MeV 23Na+ (1.33 MeV/u), 30 GW/mm2 (peak) × 1 ns (FWHM)
 Energy per pulse W = 30 J/mm2 (1.71013 ions/mm2)

(Not achievable even by the future VNL IB-HEDPX):
▬ Target: 13Al-slab,

thickness = 2.3 mg/cm2

▬ dE/d(x)-inhomogeneity =  5%,
if the cold solid Al data are used.

The target thickness and projectile energy were 
designed based on the data for cold solid Al target.
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 Original hydro code summary:   
▬ “MULTI (MULTIgroup radiation transport in MULTIlayer foils)”7, version 7

by Rafael Ramis (MPQ, Garching)
▬ 1D radiation hydrodynamics
▬ Fully implicit Lagrangian scheme
▬ Time-splitting algorithm
▬ Tabulated EOS data (SESAME table)

 Modifications made by this work:
▬ Laser deposition routine was canceled.
▬ Original ion beam deposition routine (constant dE/dx!) was modified

to use a dE/dx (E,,kT) table prepared by the present methods.
▬ Heat conductivity: Classical heat flux by Spitzer
 SESAME table

Hydro motion of the target was analyzed using
a 1D code being coupled with the stopping data.

7R. Ramis, R. Schmalz and J. Mayer-ter-Vehn, Computer Physics Communications 49 (1988) 475.



 Temporal evolution of kT and
–dE/dx during irradiation (t < 2 ns):

The target hydro motion can be affected by the 
temperature/density dependence of the stopping.

 Hydro motion after irradiation
(t > 2 ns):
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 Beam power dependence (t = 2 ns):

If the peak power is reduced to < 10 GW/mm2,
the heating homogeneity can be improved.

 cf. Previous results:
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Conclusions: The projectile stopping calculation was 
improved and successfully embedded in the hydro code.
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 Projectile stopping calculation using the quantum dielectric response theory:
▬ Temperature/density dependence of the stopping showed a similar tendency to 

the previous calculations based on the classical binary collision model.
▬ The temperature/density effects became less significant

than those by the previous calculations.
 Hydro calculation regarding the Bragg-peak-based US-WDM experiment:

▬ Consideration on the temperature/density effect might not be necessary,
if the 11Na-beam power is less than  10 GW/mm2 (or kT < 10 eV).

30-MeV 11Na+

> 10 GW/mm2

?


